Novel iron titanate catalyst for the selective catalytic reduction of NO with NH₃ in the medium temperature range†

Fudong Liu, Hong He* and Changbin Zhang

Received (in Cambridge, UK) 4th January 2008, Accepted 25th January 2008 First published as an Advance Article on the web 20th February 2008

DOI: 10.1039/b800143j

An iron titanate catalyst with a crystallite phase, prepared by a co-precipitation method, showed excellent activity, stability, selectivity and SO₂/H₂O durability in the selective catalytic reduction of NO with NH₃ in the medium temperature range.

Nitrogen oxides (NO_x) have become a major source of air pollution which can result in photochemical smog, acid rain and ozone depletion and have strong respiratory toxicity endangering human health. Stringent environmental legislation has been made worldwide to reduce NO_x emitted from mobile and stationary resources including vehicles and coal-fired power plants. Selective catalytic reduction of NO with NH₃ (NH₃-SCR) is an effective and economical method to remove NO and nowadays the most widely used catalyst system is V₂O₅-WO₃/TiO₂ or V₂O₅-MoO₃/TiO₂ with a relatively narrow temperature window of 350-400 °C.2 The problems of this system are as follows: the low N2 selectivity in the high temperature range because of N2O formation and NH3 overoxidation; the toxicity of vanadium pentoxide to the environment; and high conversion of SO2 to SO3 with increasing vanadium amounts, which can result in catalyst deactivation. Recently, many researchers have focused mainly on exploitation of new SCR catalysts with high activity in the low temperature range, such as amorphous MnO_x, 4 MnO_x–CeO₂ mixed oxides, 5 MnO_x loaded on TiO₂/Al₂O₃/SiO₂⁶/USY (ultrastable zeolite Y), ⁷ V₂O₅/AC (activated carbon)⁸ and Fe–Mn based catalysts⁹ which more or less have problems of low N2 selectivity, H2O and SO₂ deactivation and ammonium nitrate deposition, etc. Fe exchanged zeolite catalysts usually show good SCR activity in the high temperature range with remarkable H₂O and SO₂ durability, such as Fe-ZSM-5 by Ma and Grünert¹⁰ and Fe-Ce-ZSM-5 by Carja et al.11 Other Fe-based catalysts are mainly Fe₂O₃ loaded types such as Fe₂O₃-TiO₂ by Kato et al. 12 and Fe₂O₃-WO₃/ZrO₂ by Apostolescu et al. 13 with excellent SCR activity and H₂O/SO₂ durability in the medium temperature range. Based on the idea of combining the predominant SCR activity, thermal stability and N2 selectivity of Fe-based catalysts and the excellent SO₂ durability of TiO₂, here we present a novel non-toxic catalyst using an iron titanate crystal-

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: honghe@rcees.ac.cn; Fax: +86 10 62849123; Tel: +86 10 62849123

lite as the active component with a broad operation window in the medium temperature range (200–400 °C) under relatively high space velocities. NO conversion at 300 °C remaining at 100% in the presence of 10% H₂O and (or) 100 ppm SO₂ makes this catalyst a potential candidate for industrial applications.

The iron titanate catalysts were prepared by the conventional co-precipitation method using Fe(NO₃)₃·9H₂O and $Ti(SO_4)_2$ as precursors (Fe : Ti = 1 : 1 in molar ratio) and 25 wt% NH₃·H₂O as precipitator with subsequent filtration, washing, and drying at 100 °C overnight and calcination at 400, 500, 600, 700 °C for 6 h, respectively (signified by Fe_xTiO_v -400, 500, 600, 700 °C). Catalysts sieved with 20–40 mesh were used in the activity test experiments and the reaction conditions were as follows: 0.6 ml sample, 500 ppm NO, 500 ppm NH₃, 5% O₂, 100 ppm SO₂ (when used), 10% H₂O (when used), balance N₂, 500 ml min⁻¹ total flow rate and gas hourly space velocity (GHSV) = $50000 \,\mathrm{h}^{-1}$. The water vapor was injected with an accurate syringe pump equipped with an evaporator which was heated to 300 °C. The tubing of the activity test system was heated to 120 °C to avoid deposition of ammonium salts and water droplets. The effluent gas, including NO, NH₃, N₂O and NO₂ dried using CaSO₄ was continuously analyzed by an FTIR spectrometer (Thermo Nicolet Corporation Nexus 670, OMNIC Quantpad software) equipped with a heated, low volume multiple-path gas cell (2 m). The spectra were collected after 60-120 min when the SCR process reached a steady state.

The conversions of NO over catalysts under different calcination temperatures are reported in Fig. 1 as a function of reaction temperature from 150–400 °C. Fe_xTiO_y-400 °C showed the best

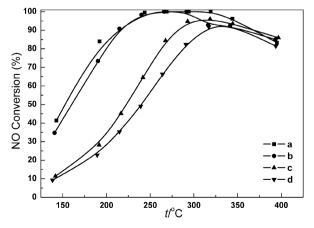
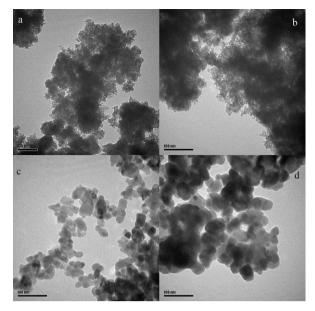
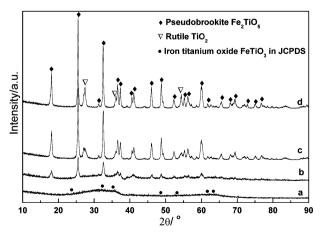
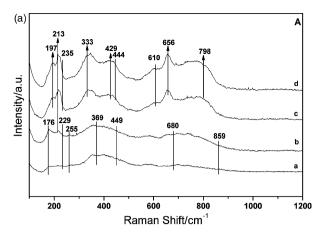
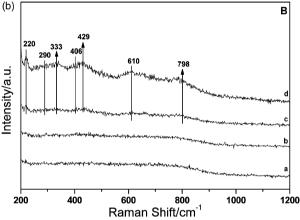


Fig. 1 NO conversions over catalysts under different calcination temperatures for 6 h: (a) 400 °C, (b) 500 °C, (c) 600 °C, (d) 700 °C.

[†] Electronic supplementary information (ESI) available: Catalyst preparation, reactant quantification, comparison with Mn- and Cubased catalysts, preliminary experiments on active component determination and an in situ DRIFTS study. See DOI: 10.1039/b800143j


Fig. 2 TEM images of catalysts under different calcination temperatures for 6 h: (a) 400 °C, magnification 200 k; (b) 500 °C, magnification 300 k; (c) 600 °C, magnification 300 k; (d) 700 °C, magnification 300 k.

activity, with NO conversion above 95% from 225 °C to 350 °C and the N₂ selectivity was always above 94% even at 400 °C. Fe_xTiO_y-500 °C had similar activity to the one calcined at 400 °C. The BET surface areas of these four catalysts are 245.3, 150.6, 48.3 and 28.1 m 2 g $^{-1}$, respectively. The TEM and XRD results are shown in Fig. 2 and 3. Comparing these results, we can see that with an increase in calcination temperature, the BET surface area had a sharp decrease along with an obvious growth in catalyst particle size (from 7–8 nm to 50–60 nm) which was one possible reason for the activity decline. The catalyst calcined at 400 °C for 6 h showed no obvious sharp X-ray diffraction peaks besides some broad bumps, implying that under this preparation condition the Fe_xTiO_y was mainly in a crystallite phase (maybe FeTiO₃ crystallite according to JCPDS-791838 and Fe₂TiO₅ crystallite). XRD patterns of pseudobrookite Fe₂TiO₅ appeared with increasing calcination temperature and rutile TiO₂ appeared after 600 °C, 700 °C calcination

Fig. 3 XRD patterns of catalysts under different calcination temperatures for 6 h: (a) 400 °C, (b) 500 °C, (c) 600 °C, (d) 700 °C.

Fig. 4 (A) Vis-Raman spectra ($\lambda_{ex}=532$ nm) and (B) UV-Raman spectra ($\lambda_{ex}=325$ nm) of catalysts under different calcination temperatures for 6 h: (a) 400 °C, (b) 500 °C, (c) 600 °C, (d) 700 °C.

for 6 h resulting in the decrease of FeTiO₃ and Fe₂TiO₅ crystallites which were considered as active components.

We also carried out Vis-Raman and UV-Raman spectrum experiments to find out the actual active phase, and these are shown in Fig. 4. Titanium oxide usually has strong absorption in the UV region, so UV-Raman spectroscopy is more surfacesensitive in these catalysts.¹⁴ Vis-Raman spectroscopy can be used to reveal the components in bulk phase which can also be associated with the XRD results. In the Vis-Raman spectra, the catalysts calcined at 400 °C and 500 °C showed several broad bands which could be attributed to FeTiO₃ crystallite (176, 229, 255, 369, 449, 680 and 859 cm⁻¹)¹⁵ and we could also see that Fe₂TiO₅ crystallite (bands with arrowheads)¹⁶ formed in Fe_xTiO_y-500 °C. After high temperature calcination, Fe₂TiO₅ had better crystallization and rutile TiO₂ (235, 444 and 610 cm⁻¹) separated out due to non-stoichiometry of Fe and Ti. This result had a good accordance with the XRD patterns. In the UV-Raman spectra, there was no obvious Raman band for Fe_xTiO_y-400 °C and 500 °C, which was due mainly to the strong absorption of UV light. Fe₂TiO₅ (bands with arrowheads) and hematite Fe₂O₃ (290, 406 and 610 cm⁻¹) could be detected on the surface of Fe_xTiO_y-600 °C and 700 °C implying that rutile TiO₂ was not the only oxide separated out during high temperature calcination. Hematite Fe₂O₃ mainly aggregated on the surface of catalyst, and rutile TiO₂ formed in the bulk phase.

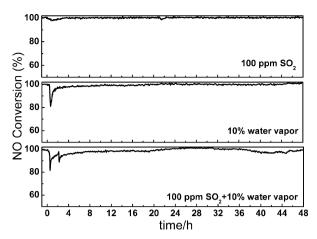


Fig. 5 NO conversion as a function of time at 300 °C over Fe_xTiO_y -400 °C in the presence of SO_2/H_2O .

This is another reason for the activity decrease. XPS results also showed that there is Fe²⁺ in the catalysts calcined at low temperature, implying the existence of FeTiO₃. The binding energy of Ti shifted from 458.6 eV to 458.8 eV resulting in a decrease of redox ability in the SCR reaction (see ESI†).

Since the combustion exhaust usually contains SO₂ and water vapor, we further chose the best catalyst Fe_xTiO_y-400 °C to study its SO₂/H₂O durability. As the deactivation effect of these two components (especially SO₂) needs a long time to achieve steady state, which makes it meaningless to test the activity by changing the reaction temperature, we chose a fixed temperature point (300 °C) to investigate their influence. The results are given in Fig. 5. As we can see, when 100 ppm SO₂ was added at 0 min, a slight decrease in NO conversion occurred after 1-2 h and then the conversion recovered to 100% and held up until 48 h. In the case of 10% H₂O, NO conversion dramatically decreased to 80% after 0.5 h and then it also recovered to 100%. Interestingly, 100 ppm SO₂ along with 10% H₂O made NO conversion decrease twice. Comparing the times when the lowest conversions were reached, we can see that: the first decrease occurring after 0.5 h was caused mainly by water vapor; the second decrease, occurring after 2 h, was much sharper than the first one and this may be caused by the synergistic poisoning effect of SO₂ and H₂O which needs to be verified in future work.

To investigate the influence of sulfation on the SCR activity across the whole temperature range, we also did the SCR (NO + NH₃ + O₂), NO oxidation (NO + O₂) and NH₃ oxidation (NH₃ + O₂) experiments, respectively over Fe_xTiO_y-400 °C after 100 ppm SO₂ sulfation for 48 h at 300 °C and the results are given in Fig. 6. After sulfation, the SCR activity decreased between 150 °C and 250 °C, however it was promoted above 250 °C to a certain extent. Results of separate NO oxidation and NH₃ oxidation experiments showed that: the sulfation could cause deactivation of NO oxidation to NO₂ which was possibly the reason for activity loss in the relatively low temperature range where the "fast SCR" was important to the reaction;¹⁷ decrease of non-selective oxidation of NH₃ to nitrogen oxides in the relatively high temperature range was possibly responsible for the activity promotion.

In conclusion, the iron titanate catalyst with a crystallite phase, prepared by a conventional co-precipitation method,

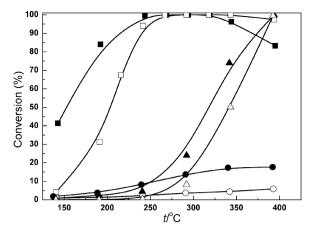


Fig. 6 Comparison of SCR, separate NH₃ oxidation and separate NO oxidation activities over catalyst before and after sulfation: \blacksquare , \square NO conversion in SCR before and after sulfation; \blacktriangle , \triangle NH₃ conversion in NH₃ oxidation before and after sulfation; \blacksquare , \bigcirc NO conversion in NO oxidation before and after sulfation.

showed excellent NH₃-SCR activity, N₂ selectivity and SO_2/H_2O durability in a broad medium temperature range. Even after 48 h sulfation, the catalyst still showed NO conversion above 90% from 250 °C to 400 °C. Studies concerning the mechanism of SCR reaction on this catalyst and SO_2/H_2O deactivation effect are under way.

We sincerely appreciate the help from Professor Can Li and Zhaochi Feng with respect to the Raman spectrum experiments in the Dalian Institute of Chemical Physics, Chinese Academy of Sciences. This work was financially supported by the National Natural Science Foundation of China (20425722, 20621140004) and the Ministry of Science and Technology, China (2006AA060304).

Notes and references

- 1 H. Bosch and F. Janssen, Catal. Today, 1988, 2, 369.
- 2 G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal., B, 1998, 18, 1.
- 3 J. P. Dunn, P. R. Koppula, H. G. Stenger and I. E. Wachs, *Appl. Catal.*, B, 1998, 19, 103.
- 4 X. L. Tang, J. M. Hao, W. G. Xu and J. H. Li, *Catal. Commun.*, 2007, **8**, 329.
- 5 G. Qi, R. T. Yang and R. Chang, Appl. Catal., B, 2004, 51, 93.
- 6 P. G. Smirniotis, P. M. Sreekanth, D. A. Peña and R. G. Jenkins, Ind. Eng. Chem. Res., 2006, 45, 6436.
- 7 G. Qi, R. T. Yang and R. Chang, Catal. Lett., 2003, 87, 67.
- 8 Z. G. Huang, Z. P. Zhu, Z. Y. Liu and Q. Y. Liu, J. Catal., 2003, 214, 213.
- 9 R. Q. Long, R. T. Yang and R. Chang, Chem. Commun., 2002, 452.
- 10 A. Z. Ma and W. Grünert, Chem. Commun., 1999, 71.
- 11 G. Carja, G. Delahay, C. Signorile and B. Coq, Chem. Commun., 2004, 1404.
- 12 A. Kato, S. Matsuda, F. Nakajima, M. Imanari and Y. Watanabe, J. Phys. Chem., 1981, 85, 1710.
- 13 N. Apostolescu, B. Geiger, K. Hizbullah, M. T. Jan, S. Kureti, D. Reichert, F. Schott and W. Weisweiler, Appl. Catal., B, 2006, 62, 104.
- 14 J. Zhang, M. J. Li, Z. C. Feng, J. Chen and C. Li, J. Phys. Chem. B, 2006, 110, 927.
- 15 A. L. Wang, K. E. Kuebler, B. L. Jolliff and L. A. Haskin, Am. Mineral., 2004, 89, 665.
- 16 P. H. C. Camargo, G. G. Nunes, G. R. Friedermann, D. J. Evans, G. J. Leigh, G. Tremiliosi-Filho, E. L. de Sá, A. J. G. Zarbin and J. F. Soares, *Mater. Res. Bull.*, 2003, 38, 1915.
- 17 M. Koebel, M. Elsener and G. Madia, *Ind. Eng. Chem. Res.*, 2001, 40, 52.